CXCR4/SDF-1α-chemokine regulates neurogenesis and/or angiogenesis within the vascular niche of ischemic rats; however, does SDF-1α play a role in repair?

Cell-based treatment of stroke-mediated neuronal progenitor (NPC), and bone marrow stromal cells (BMSC) has shown promise in cerebral ischemia. Transplantation of NPCs after experimental stroke has been demonstrated to improve functional recovery, reduce apoptosis, and enhance angiogenesis and neurotrophic factor release. Furthermore, the stem cells can differentiate into other cells and promote endogenous cell proliferation and axonal remodelling (1, 2). New stroke therapies based on the protective effects of cerebroprotective drugs seem to ameliorate the deleterious inflammatory responses in animal models of focal cerebral ischemia (3). However, how does altered inflammatory response contribute in balancing the interplay between neurodegeneration and regeneration?

Notable advances have been made in understanding the basic cellular mechanisms through which chemokines (chemoattract cytokines) recruit leukocytes to damaged areas of the central nervous system; new roles for these cytokines as neuropeptides and/or neuromodulators are emerging (4). Chemokine stromal cell-derived factor (SDF-1α) is the ligand for CXCR4α-chemokine receptor is expressed by glia and neurons and has a dual role in neurodegeneration and/or neuroprotection (4). It can potentially promote neurogenesis within the neurogenic zones (neurovascular niches) to counteract local damage in the penumbra area after cerebral ischemia (5). After the initial ischemic response, hypoxia activates CXCR4 in endothelial and microglial cells in the brain. In these conditions, CXCR4/SDF-1 cell signalling pathways promotes neural progenitor migration toward peri-infarct areas several days after the injury (1, 6). The resulting angiogenesis might promote neural plasticity and enhances vascular regeneration after experimental stroke, inducing repair (1) and improving functional outcome via SDF-1/CXCR4 chemokines (6, 7). Interestingly, a crosstalk between angiogenesis and neurogenesis SDF-1/CXCR4 dependent levels may enhance BMSC entry into the ischemic brain (6–8). Cerebroprotective drugs such as simvastatine improve functional outcome by increasing SDF-1/CXCR4 chemokine levels after stroke and would allow neurogenic and angiogenic responses within damaged areas in ischemic rats that are simvastatine and/or BMSC treated (6, 8). These neurogenic effects are in consonance with new reports in which systemically transplanted BMSCs promote SDF-1α/CXCR4-mediated migration toward the ischemic brain lesion in a rat model (9).

One common factor in the different environments where vasculogenesis is believed to occur is the presence of a hypoxic stimulus and progenitor homing in response to hypoxia-inducible factor 1 (HIF-1)-regulated hypoxia; HIF-1 regulates SDF-1α level mediating progenitor cell recruitment to injured tissue (10). Recent evidences are important from a translational viewpoint as the transplanted neural stem cells express HIF-1, a cue molecule involved in regeneration and neovascularisation, and induce behavioral recovery in the rat stroke model (11). In addition, CXCR4 expression is important for cell migration and recruitment, suggesting that the expression levels of CXCR4 may be correlated with the functional activity of implanted cells to promote neovascularisation (9). These observations are in consonance with Li et al’s (5) studies. These authors reported neurovascularization with MsCh bone-derived by CXCR4+ progenitors that differentiate into endothelial cells capable of inducing vascular repair after arterial injury (6). Consequently, CXCR4 expression levels could be a predictive marker of endothelial colony forming cell therapy in injured arteries (9). As such, ischemic tissue may be a conditional stem cell niche, in which recruitment and retention of circulating progenitors by SDF-1α would be regulated by hypoxia (6–7, 10). It could be suggested that hypoxia may be a fundamental requirement for progenitor cell trafficking and function as endothelial expression of SDF-1 acts as a chemotactic signal, indicating the presence of tissue ischemia and its expression is directly regulated by HIF-1 (10, 11). A recent study by our research group has shown brain protective strategies based on stem cell delivery (12) or cerebroprotective approaches (EPO and/or porcine brain-derived peptide) may promote neuroplastic and antiapoptotic effects by regulating CXCR4/SDF-1α-chemokines in the injured cortex of ischemic rats (6–7, 13). Further studies will analyze whether porcine brain-derived peptide effects may promote neural progenitor cell migration and/or regulate neuroblast migration toward damaged areas in the ischemic cortex through CXCR4/SDF-1α chemokine signalling in a rat model of embolic middle cerebral artery occlusion. Consequently, the promotion of novel self-repair strategies based on stem cell recruitment by SDF-1α may counteract cell death and improve recovery in the injured cortex of ischemic rats (6, 13, 14).

José Joaquín Merino*1,2, María Gutiérrez-Fernández2, Berta Rodríguez-Frutos2, Julia Álvarez-Grech2, Mercedes Expósito-Alcalde2, María Teresa Vallejo-Cremades1, and Exuperio Díez-Tejedor2

*Instituto de Investigación Sanitaria (IdiPaz), ‘La Paz’ University Hospital, Autonomous University of Madrid, Madrid, Spain
1Neuroscience and Cerebrovascular Research Lab, Stroke Unit, Department of Neurology,
Instituto de Investigación Sanitaria (IdiPaz), “La Paz” University Hospital, Autónoma University of Madrid, Madrid, Spain

Correspondence: José Joaquín Merino*, Spain. E-mail:

DOI: 10.1111/j.1747-4949.2011.00651.x

References

Dear Author,

During the copy-editing of your paper, the following queries arose. Please respond to these by marking up your proofs with the necessary changes/additions. Please write your answers clearly on the query sheet if there is insufficient space on the page proofs. If returning the proof by fax do not write too close to the paper's edge. Please remember that illegible mark-ups may delay publication.

<table>
<thead>
<tr>
<th>Query No.</th>
<th>Description</th>
<th>Author Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>AUTHOR: Please provide department for affiliation 1.</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>AUTHOR: Please check if the corresponding address and email address for corresponding author José Joaquín Merino. And also please check if you would like to add facebook/twitter/blog details in Correspondence contacts.</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>AUTHOR: If this is not a one-page article please supply the last page for reference [13].</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>AUTHOR: Please provide volume and page range for reference [14].</td>
<td></td>
</tr>
</tbody>
</table>
USING E-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION

Required Software
Adobe Acrobat Professional or Acrobat Reader (version 7.0 or above) is required to e-annotate PDFs. Acrobat 8 Reader is a free download: http://www.adobe.com/products/acrobat/readstep2.html

Once you have Acrobat Reader 8 on your PC and open the proof, you will see the Commenting Toolbar (if it does not appear automatically go to Tools>Commenting>Commenting Toolbar). The Commenting Toolbar looks like this:

If you experience problems annotating files in Adobe Acrobat Reader 9 then you may need to change a preference setting in order to edit.

In the “Documents” category under “Edit – Preferences”, please select the category ‘Documents’ and change the setting “PDF/A mode:” to “Never”.

Note Tool — For making notes at specific points in the text

Marks a point on the paper where a note or question needs to be addressed.

Replacement text tool — For deleting one word/section of text and replacing it

Strikes red line through text and opens up a replacement text box.

Cross out text tool — For deleting text when there is nothing to replace selection

Strikes through text in a red line.
Approved tool — For approving a proof and that no corrections at all are required.

How to use it:
1. Click on the Stamp Tool in the toolbar
2. Select the Approved rubber stamp from the ‘standard business’ selection
3. Click on the text where you want to rubber stamp to appear (usually first page)

Highlight tool — For highlighting selection that should be changed to bold or italic.

Highlight text in yellow and opens up a text box.

How to use it:
1. Select Highlighter Tool from the commenting toolbar
2. Highlight the desired text
3. Add a note detailing the required change

Attach File Tool — For inserting large amounts of text or replacement figures as a file.

Inserts symbol and speech bubble where a file has been inserted.

How to use it:
1. Click on paperclip icon in the commenting toolbar
2. Click where you want to insert the attachment
3. Select the saved file from your PC/network
4. Select appearance of icon (paperclip, graph, attachment or tag) and close

Pencil tool — For circling parts of figures or making freeform marks

Creates freeform shapes with a pencil tool. Particularly with graphics within the proof it may be useful to use the Drawing Markups toolbar. These tools allow you to draw circles, lines and comment on these marks.

How to use it:
1. Select Tools > Drawing Markups > Pencil Tool
2. Draw with the cursor
3. Multiple pieces of pencil annotation can be grouped together
4. Once finished, move the cursor over the shape until an arrowhead appears and right click
5. Select Open Pop-Up Note and type in a details of required change
6. Click the X in the top right hand corner of the note box to close.
Help
For further information on how to annotate proofs click on the Help button to activate a list of instructions: